MATH-MD-CC1-1-Th Calculus, Geometry & Vector Analysis			
Week	· · · · ·	Teaching	Faculty
Number	Topics Covered	Pedagogy	Name
			Ms.
	Differentiability of a function at a point and in	Lecture,	Manisha
1	an interval; Meaning of the sign of derivative	Examples, Q&A	Basu
		Lecture, Worked	Ms.
	Differentiating hyperbolic functions;	examples,	Manisha
2	Introduction to higher-order derivatives	Practice exercises	Basu
		Problem-solving	
	Leibnitz rule and its applications to functions	sessions,	Ms.
	(e.g., eax+bsinxe^{ax+b} \sin xeax+bsinx,	Interactive	Manisha
3	(ax+b)nsinx(ax+b)^n \sin x(ax+b)nsinx)	practice	Basu
		Demonstrations,	Ms.
	Indeterminate forms; Introduction to	Real-life	Manisha
4	L'Hospital's rule	applications	Basu
T	Reduction formulae; Derivation of reduction		
	formulae for $sin@nx dx int sin^n x $,	Step-by-step	Ms.
	dxsinnxdx, fcos ¹⁰ / ₁ nx dx/int /cos ² / ₁ nx d/,	derivations,	Manisha
5	dx∫cosnxdx	Examples, Q&A	Basu
J	Reduction formulae for [tan ¹⁰⁰ nx dx\int \tan^n		5050
	x dx [tannxdx, [sec ²⁰ nx dx\int \sec^n x	Practice-based	Ms.
	dx[secnxdx,](logx)ndx\int (\log x)^n	learning,	Manisha
C		•	
6	dx∫(logx)ndx	Problem-solving	Basu
	Reduction formulae for ∫sin [™] mxsin [™] mx dx\int	Lasture Crown	N.4-
	\sin^n x \sin^m x dx∫sinnxsinmxdx,	Lecture, Group	Ms.
-	$\int \sin \alpha x \cos \alpha x \ln x \sin^n x \cos^n x $	work, Peer	Manisha
7	dx∫sinnxcosmxdx	feedback	Basu
		Interactive	Ms.
	Parametric equations; Parametrizing a curve;	session, Visual	Manisha
8	Arc length of a curve and parametric curves	aids, Q&A	Basu
		Demonstrations,	Ms.
	Area under a curve; Area and volume of	Examples, Hands-	Manisha
9	surface of revolution	on calculations	Basu
		Interactive	
		lecture, Visual	Ms.
	Rotation of axes; Second-degree equations;	examples, Real-	Manisha
10	Classification of conics using the discriminant	life applications	Basu
		Problem-solving,	Ms.
	Reduction to canonical form; Tangent and	Graphical	Manisha
11	normal to conics; Polar equations of conics	illustrations	Basu
		Visual	Ms.
	Spheres; Cylindrical surfaces; Central conicoids	demonstrations,	Manisha
12	and paraboloids	Q&A, 3D models	Basu
		Problem-solving,	
		Illustrative	Ms.
	Plane sections of conicoids; Generating lines;	models, Group	Manisha
13	Classification of quadric surfaces	discussion	Basu
	Vector Analysis: Triple product; Applications to	Lecture, Real-life	Ms.
			Manisha
	geometry and mechanics (concurrent forces,	applications,	IVIdHISHA

Week	Subject: C Language with Mathematical Applications (M	,	Facult
Num		Teaching	у
ber	Topics Covered	Pedagogy	Name
	·		Ms.
	Overview of computer architecture, compiler, assembler,	Lecture,	Manis
	machine language, high-level language, object-oriented	Demonstrations,	ha
1	language, programming language	Q&A	Basu
			Ms.
	Constants, Variables, and Data Types in C: Character set,		Manis
	constants, variables, data types, expressions, assignment	Interactive lecture,	ha
2	statements, declaration	Coding examples	Basu
-			Ms.
			Manis
	Operations and Expressions: Arithmetic, relational, and	Hands-on coding,	ha
3	logical operators	Problem-solving,	Basu
5		FIODIEITI-SOIVIIIg	
		Dractice based	Ms. Mania
		Practice-based	Manis
4	Desision Maline with if and if also statements	learning, Coding	ha
4	Decision Making with if and if-else statements	exercises	Basu
		Examples,	Ms.
		Demonstrations,	Manis
	Nested if statements, switch statement, break and	Real-life	ha
5	continue statements	applications	Basu
			Ms.
			Manis
		Problem-solving,	ha
6	Control Statements: Introduction to while loop	Group practice	Basu
			Ms.
			Manis
		Coding exercises,	ha
7	Control Statements: do-while loop and for loop	Q&A	Basu
			Ms.
			Manis
	Arrays: One-dimensional arrays, declaration, and	Step-by-step	ha
8	initialization	examples, Practice	Basu
			Ms.
		Hands-on coding,	Manis
	Arrays: Two-dimensional arrays, declaration, and	Visual	ha
9	initialization	demonstrations	Basu
			Ms.
			Manis
	Arrays: Multidimensional arrays, declaration, and	Coding exercises,	ha
10	initialization	Examples	Basu
10			Ms.
			Manis
	User-defined Functions: Function definition, scope of	Lecture, Code-	ha
	variables, return types	along examples	Basu

	User-defined Functions: Function declaration, function call	Problem-solving,	Ms. Manis ha
12	by value, nesting of functions	Hands-on coding	Basu
			Ms.
			Manis
	User-defined Functions: Passing arrays to functions,	Real-life	ha
13	recursion	applications, Q&A	Basu
			Ms.
		Practical exercises,	Manis
	Introduction to Library Functions: stdio.h, math.h,	Function	ha
14	string.h, stdlib.h, time.h	demonstrations	Basu

Subject: Ordinary Differential Equations – I and Group Theory - I (MATH-H-CC 4-3-TH)

Week			Facult
Num		Teaching	у
ber	Topics Covered	Pedagogy	Name
			Ms.
			Manis
	Formation of differential equations, Order and degree of a	Lecture,	ha
1	differential equation	Examples, Q&A	Basu
			Ms.
		Problem-solving,	Manis
	First-order and first-degree differential equations,	Step-by-step	ha
2	Homogeneous and exact differential equations	examples	Basu
			Ms.
		Interactive	Manis
	Conditions for exactness, Integrating factors, Rules for	lecture, Practice	ha
3	finding integrating factors	exercises	Basu
			Ms.
	Linear equations and Bernoulli equations; First-order	Problem-solving	Manis
	higher-degree differential equations solvable for x, y, and	sessions, Real-life	ha
4	р	examples	Basu
			Ms.
		Lecture, Visual	Manis
	Clairaut's forms; Singular solutions, Equations of tac-locus,	demonstrations,	ha
5	nodal locus, and cuspidal locus	Q&A	Basu
			Ms.
		Theory	Manis
	Higher-order linear and nonlinear equations; Concept of	explanation,	ha
6	Wronskian and its properties	Examples, Practice	Basu
			Ms.
		Problem-solving,	Manis
_	Complementary functions, Particular integrals for linear	Hands-on	ha
7	homogeneous and non-homogeneous equations	exercises	Basu
			Ms.
	Method of undetermined coefficients and Method of		Manis
	variation of parameters; Simultaneous linear differential	Worked examples,	ha
8	equations	Q&A	Basu

			Ms. Manis
	Higher-order linear equations with variable coefficients	Problem-solving,	ha
9	reducible to constant coefficients (Euler's equation)	Visual aids	Basu
			Ms.
			Manis
	Condition for exactness of higher-order linear equations;	Practice-based	ha
10	Integrating factors	learning, Q&A	Basu
			Ms.
	Introduction to Group Theory: Definition and examples of		Manis
	groups including permutation, dihedral, and quaternion	Interactive	ha
11	groups	lecture, Examples	Basu
			Ms.
			Ms. Manis
	Elementary properties of groups; Commutative and non-	Lecture, Group	
12	Elementary properties of groups; Commutative and non- commutative groups; Subgroups and examples	Lecture, Group activities	Manis
12			Manis ha
12			Manis ha Basu
12		activities	Manis ha Basu Ms.
12	commutative groups; Subgroups and examples	activities Problem-solving,	Manis ha Basu Ms. Manis
	commutative groups; Subgroups and examples Necessary and sufficient conditions for a subset to be a	activities Problem-solving, Step-by-step	Manis ha Basu Ms. Manis ha
	commutative groups; Subgroups and examples Necessary and sufficient conditions for a subset to be a	activities Problem-solving, Step-by-step	Manis ha Basu Ms. Manis ha Basu
	commutative groups; Subgroups and examples Necessary and sufficient conditions for a subset to be a subgroup; Order of elements and groups; Cyclic groups	activities Problem-solving, Step-by-step demonstrations	Manis ha Basu Ms. Manis ha Basu Ms.

	Subject: Linear Programming and Rectangular Games (MATH-H-SEC3-3-Th)			
Week Numb er	Topics Covered	Teaching Pedagogy	Faculty Name	
			Ms.	
	Introduction to Linear Programming Problem	Lecture, Real-life	Manisha	
1	(L.P.P.), Formation of L.P.P. from real-life scenarios	examples, Q&A	Basu	
		Interactive lecture,	Ms.	
	Graphical solution of L.P.P., Basic solutions, Basic	Graphical	Manisha	
2	Feasible Solutions (B.F.S.)	demonstrations	Basu	
			Ms.	
	Matrix formulation of L.P.P., Degenerate and Non-	Examples, Hands-on	Manisha	
3	degenerate B.F.S.	exercises	Basu	
			Ms.	
	Hyperplane, Convex set, Cone, Extreme points,	Visual aids, Lecture,	Manisha	
4	Convex hull, Convex polyhedron	Q&A	Basu	
		Step-by-step	Ms.	
	Feasible solutions of an L.P.P. as a convex set; B.F.S.	explanations,	Manisha	
5	and extreme points, Optimality at extreme points	Problem-solving	Basu	
			Ms.	
	Slack and surplus variables, Standard form of L.P.P.,	Lecture, Practice	Manisha	
6	Introduction to simplex method	problems	Basu	

	Theory of simplex method, Feasibility and optimality	Worked examples,	Ms. Manisha
7	conditions	Q&A	Basu
			Ms.
	Simplex Algorithm and Two-phase method,	Hands-on coding,	Manisha
8	Degeneracy in L.P.P. and resolution	Step-by-step guide	Basu
			Ms.
	Duality theory: Relation between primal and dual	Interactive lecture,	Manisha
9	problems, Optimal values	Examples	Basu
			Ms.
	Post-optimal Analysis: Discrete changes in cost	Lecture, Real-world	Manisha
10	vector, requirement vector, and coefficient matrix	applications	Basu
			Ms.
	Post-optimal Analysis (cont.): Addition of variables	Hands-on exercises,	Manisha
11	and constraints	Q&A	Basu
	Transportation and Assignment problems,		Ms.
	Mathematical justification for optimality, Hungarian	Problem-solving, Case	Manisha
12	method	studies	Basu
			Ms.
	Traveling Salesman problem; Concept of game	Lecture, Practical	Manisha
13	problem, Rectangular games	examples	Basu
	Pure and Mixed strategies, Saddle point, Optimal		Ms.
	strategy, Concept of Dominance, Solving rectangular	Visual aids, Problem-	Manisha
14	games	solving sessions	Basu
			Ms.
	Fundamental Theorem of rectangular games,		Manisha
15	Algebraic, Graphical, and Dominance methods	Group activities, Q&A	Basu
			Ms.
	Inter-relation between theory of games and L.P.P.,	Summary discussion,	Manisha
16	Course Review and Q&A	Practice review	Basu

	Subject: Particle Dynamics (MTM-G-DSE-A-TH & MTM-G-DSE-A-TU)			
Week Numbe		-	Faculty	
r	Topics Covered	Teaching Pedagogy	Name	
			Ms.	
	Velocity and Acceleration of a particle; Expressions in	Lecture, Examples,	Manisha	
1	rectangular Cartesian and polar coordinates	Q&A	Basu	
			Ms.	
	Tangential and normal components of velocity and	Visual aids,	Manisha	
2	acceleration for a particle moving along a plane curve	Problem-solving	Basu	
		Interactive lecture,	Ms.	
	Concept of Force: Newton's laws of motion, Work,	Practical	Manisha	
3	power, and energy	applications	Basu	
			Ms.	
	Principles of conservation of energy and momentum;	Lecture, Real-life	Manisha	
4	Motion under impulsive forces	examples	Basu	

			Ms.
	Equations of motion for a particle moving in a	Problem-solving,	Manisha
5	straight line	Practice exercises	Basu
			Ms.
		Interactive lecture,	Manisha
6	Equations of motion for a particle moving in a plane	Worked examples	Basu
		Problem-solving,	Ms.
	Motion of a particle in a straight line under constant	Step-by-step	Manisha
7	forces	guidance	Basu
			Ms.
	Motion under variable forces: Simple Harmonic	Lecture, Examples,	Manisha
8	Motion (S.H.M.), Inverse square law	Q&A	Basu
			Ms.
	Motion under variable forces: Damped oscillation,	Visual aids,	Manisha
9	Forced and Damped oscillation	Problem-solving	Basu
			Ms.
	Motion in an elastic string; Equation of energy,	Interactive lecture,	Manisha
10	Conservative forces	Practice problems	Basu
			Ms.
		Lecture, Visual	Manisha
11	Motion in two dimensions: Projectiles in vacuum	examples	Basu
			Ms.
	Motion in a medium with resistance varying linearly	Problem-solving,	Manisha
12	as velocity	Q&A	Basu
		Real-life	Ms.
	Motion under forces varying as distance from a fixed	applications,	Manisha
13	point	Problem-solving	Basu
			Ms.
	Central orbits; Kepler's laws of motion and motion	Summary lecture,	Manisha
14	under inverse square law	Case studies	Basu

	Subject: Advanced Calculus (MTM-G-DSE-B-TH & MTM-G-DSE-B-TU)			
Week Numb er	Topics Covered	Teaching Pedagogy	Faculty Name	
	Concept of Point-wise and Uniform convergence of		Ms.	
	sequence of functions and series of functions,	Lecture, Examples,	Manish	
1	Introduction to Power Series	Q&A	a Basu	
			Ms.	
	Weierstrass M-Test for Uniform convergence of	Interactive lecture,	Manish	
2	sequence of functions and series of functions	Problem-solving	a Basu	
	Applications of Weierstrass M-Test, Boundedness,		Ms.	
	Continuity, Differentiability, and Integrability in Uniform	Visual aids,	Manish	
3	Convergence	Worked examples	a Basu	
		Problem-solving,	Ms.	
	Radius of convergence of Power Series; Continuity of	Step-by-step	Manish	
4	sum function of Power Series	explanations	a Basu	

			Ms.
	Term-by-term integration and differentiation of Power	Lecture, Practice	Manish
5	Series, Statement of Abel's Theorems on Power Series	problems	a Basu
			Ms.
	Convergence of Power Series, Expansions of elementary	Examples, Practice	Manish
6	functions (e ^x , sinx, log(1+x), (1+x) ⁿ)	exercises	a Basu
		Visual	Ms.
	Periodic Fourier Series on (- π , π); Introduction to	demonstrations,	Manish
7	Periodic Functions	Examples	a Basu
			Ms.
		Interactive lecture,	Manish
8	Determination of Fourier coefficients, Simple problems	Problem-solving	a Basu
			Ms.
	Dirichlet's Conditions for convergence, Convergence of	Lecture, Examples,	Manish
9	Fourier Sine and Cosine series	Q&A	a Basu
			Ms.
	Introduction to Laplace Transform; Existence theorem,	Lecture, Problem-	Manish
10	Elementary properties of Laplace Transform	solving	a Basu
			Ms.
	Inverse Laplace Transform, Elementary properties of	Worked examples,	Manish
11	Inverse Laplace Transform	Q&A	a Basu
	Application of Laplace Transform to solving ordinary	Problem-solving,	Ms.
	differential equations of second order with constant	Practical	Manish
12	coefficients	applications	a Basu
			Ms.
	Additional applications of Laplace Transforms in	Examples, Group	Manish
13	differential equations, Real-world scenarios	exercises	a Basu
		Summary	Ms.
	Course Review, Summary of Key Concepts, and Practice	discussion, Practice	Manish
14	Problem Session	review	a Basu