Memory Management — (cont...2)

Logical and Physical Address Space

The computer interacts via logical and physical addressing to map memory. Logical
Address is the one that is generated by CPU and it is also referred to as Virtual
Address. The program perceives this address space.

Physical address is the actual address understood by computer hardware, i.e. the
memory unit. Logical to Physical address translation is taken care by the O/S.

The term Virtual Memory refers to the abstraction of separating Logical Memory (the
memory as seen by the Program/Process) from Physical Memory (memory as seen by
the Processor). Because of this separation, the programmer needs to be aware of only
the logical memory space while the O/S maintains two or more levels of physical
memory space.

In compile-time and load-time address binding schemes, these two tend to be the same.
These differ in execution-time address binding scheme and the MMU (Memory
Management Unit) handles translation of these addresses.

MMU (Memory Management Unit) is a hardware device that maps logical address to
the physical address. It maps the virtual address to the real store location. The simple
MMU scheme adds the relocation register contents to the base address of the program
that is generated at the time it is sent to the memory.

The entire set of logical addresses forms logical address space and set of all
corresponding physical addresses makes physical address space.

Memory Allocation Strateqgies

In practical scenario, Operating Systems can be divided into several categories as
shown below:

1. Single process system

2. Multiple process system — Fixed Partition memory and Variable Partition Memory.



Memory Allocation

A

v v
Contiguous Allocation Non-Contiguous Allocation
v v
Single-Partition System Multiple-Partition System
v L 4
Fixed-Partition System Variable-Partition System

v
v v

Equal Sized Unequal Sized

In an uniprogramming system, main memory is divided into two parts: One part is the
operating system and the other part contains the program currently being executed. In
multiprogramming system, the user part of memory is subdivided to accommodate
multiple processes.

In uniprogramming system, only one program is in execution and only after completion
of this program, another program may start. But in general, most of the programs
involve I/O operations and it takes input from some input devices or displays the result
in some output devices.

To utilize the idle time of CPU, we have shifted the paradigm from uniprogram
environment to multiprogram environment, so that there exist a good mix of CPU-bound
processes along with 1/0O bound processes and maximum utilization of resources gets
established.

Partition of main memory for single process system and multi-process system is shown
below:

Operating System Operating System

User Program 1

User Program User Program 2

User Program 3

Uniprogramming / Single Multi-programming /
Process system Multi-Process system



Multiple Partition System — Fixed Sized Partition

This is also known as static partitioning scheme. The entire memory is divided into n
(possibly unequal) fixed-sized partitions having fixed boundaries, each of which can
hold exactly one process. The degree of multiprogramming is dependent on the number
of partitions. We can have one queue per partition or just a single queue for all the
partitions.

Initially, whole memory is available for user processes and is like a large block of
available memory. O/S keeps details of available memory blocks and occupied blocks in
tabular form. O/S also keeps track on memory requirements of each process.

As processes enter into the input queue and when sufficient space for it is available,
process is allocated space and is loaded. After its execution is over it releases its
occupied space and O/S fills this space with other processes from the input queue.

The block of available memory is known as a Hole. Holes of various sizes are scattered
throughout the memory. When a process arrives, it is allocated memory from a hole that
is large enough to accommodate it.

0/s 0/s 0/S

Partition 1

(100K)

Partition 2 <
(200K)

Partition 3
(400K)

Process A (50K)

.

Process B (150K)

.

Process C (200K)

Process A (50K)

__

Process B Hole (200K

Terminated
_—

Process C (200K)

Fixed Sized Partition Scheme

Process A (50K)

2

Process D

Process D (100K)

Arrives
e

e

Process C (200K)

This scheme suffers from fragmentation problem. Storage fragmentation occurs either
because the user processes do not completely accommodate the allotted partition or
partition remains unused. Any program, however small it is, occupies an entire partition.




This phenomenon, in which there is wasted space internal to a partition is known as
internal fragmentation.

Multiple Partition System — Variable Sized Partition

This is also known as dynamic partitioning scheme, where the boundaries are not
fixed. Processes accommodate memory according to their requirement. There is no
wastage, as partition size is exactly same as the size of the user process. Initially when
processes start, this wastage can be avoided but later on when they terminate they
leave holes in the main memory. Other processes may avail these, but eventually they
become too small to accommodate new jobs.

0/s 0/s /s

Process D

Process A Hole

Process A Process D
> > Process B

Process B Terminated Process B Arrives
Pr

Process C Process C ocess C

Variable sized Partitions

The program of Fragmentation remains in this case also. As time goes on and
processes are loaded and removed from memory, fragmentation increases and memory
utilization declines. This wastage of memory, which is external to partition is known as
external fragmentation.

External fragmentation can be removed by coalescing holes and storage compaction.
Coalescing holes is the process of merging existing holes adjacent to a process that
will terminate and free its allocated space. Thus new adjacent holes and existing holes
can be viewed as a single large hole and can be efficiently utilized.

There is another possibility that holes are distributed throughout the memory. For
utilizing such scattered holes, all occupied areas of memory are shuffled to one end and
all free memory space are left into a single large block which can further be utilized.
This mechanism is known as Storage Compaction.

0/s 0/sS

Process A > Process A

W / Process B
Process B

Storage Compaction



Storage Compaction also has the following limitations:

e |t requires extra overheads in terms of resource utilization and large response
time

e Compaction is required frequently, as jobs terminate rapidly.

e Compaction is only possible if dynamic relocation (relocation at run-time) is being
used.

So in order to solve this fragmentation problems, we can either compact the memory
making large free memory blocks, in expense of large overheads in terms of resource
utilization, or implement paging scheme which allows a program’s memory to be non-
contiguous, thus permitting a program to be allocated physical memory wherever it is
available.



