
Memory Management – (cont…3)

Paging
Paging scheme solves the problem faced in variable sized partitions like external
fragmentation. In a paged system, logical memory is divided into a number of fixed
sized chunks called Pages. The physical memory is also pre-divided into same fixed
sized blocks called Frames. The page size and the frame size are always in powers
of 2, and vary between 512 bytes and 8192 bytes per page. The reason behind this
is implementation of paging mechanism using page number and page offset.

Each process page is allocated to some memory frame. These pages can be
loaded into contiguous frames in memory or into noncontiguous frames.

Each time when a process of size n is to be loaded, it is important to know the
best location from the list of available/free holes. This dynamic storage allocation is
necessary to increase efficiency and throughput of system. Most commonly used
strategies are:

1. Best-fit Policy: Allocating the hole in which the process fits most tightly.
2. First-fit Policy: Allocating the first available hole, according to memory order,

which is big enough to accommodate the new process.
3. Worst-fit Policy: Allocating the largest hole that will leave maximum amount of

unused space.

Hardware support for paging

Every logical page in paging scheme is divided into two parts:

1. A page number (p) in logical address space and
2. The displacement (d), also called offset, the displacement of the given page p,

from the start of it.

Frames

Page0

Page1

Page2

Page3

Page4

Frame NoPage No

10

31

62

43

24

Page01

Page4

Page1

Page3

Page2

2

3

4

5

6

0
Pages

Page TableLogical Memory

Physical Memory
Principle of operation of Paging



This is known as the Address Translation Scheme. Let us take an example of a 16-
bit address, which is divided into two parts with page number (p) taking 5 bits and
Displacement (d) taking 11 bits, as shown in the figure below.

Here the page no. (n) takes 5 bits, so range of values is 0 – 31 (i.e. 25-1). Similarly,
offset value uses 11-bits, so range is 0 to 2047 (i.e. 211-1). Summarizing this we can
say that this paging scheme uses 32 pages, each with 2048 locations.

The table which holds virtual address to physical address translations, is called the
page table. As displacement is constant, so only translation of virtual page number of
physical page number is required.

The page number is used as an index into a page table and the latter contains base
address of each corresponding physical memory page number (Frame number).
This reduces dynamic relocation efforts. The paging hardware support is shown
below.

01110 00000110110

15 10 0

Page No (p) Displacement (d)

Virtual page No Page offset

31 11 0

Translation

Physical Page No Page offset

31 11 0

Address Translation scheme (32 bit address)

Processor
(running
program)

p d f d f

f

p

Virtual Address Physical Address

Physical Memory

Page Table

Paging Address Translation, using Direct Mapping



This is the scenario of paging address translation, using direct mapping. Here the
page table is used directly to locate the address of physical memory page. But main
disadvantage of this direct mapping is its speed of translation. As because the page
table resides in the main memory and its size may increase considerably, which
increases instruction execution time.

We can overcome this by using additional hardware support of registers and buffers.
This is the Paging Address Translation with Associative Mapping. This scheme is
based on use of dedicated registers with high speed and efficiency. These small,
fast-lookup cache help to place a part of the entire page table into a content-
addresses associative storage and hence speed-up the lookup problem with a cache.
These are known as Associative Registers or Translation Look-aside Buffers (TLBs).

Each register consists of two entries.

(i) Key, which is matched with logical page p. and

(ii) Value which returns page frame number corresponding to p.

It is similar to direct mapping scheme but here as TLBs contain only few page table
entries, so search is fast, although it is quite expensive due to register support. So
both direct and associative mapping schemes can be combined to get more benefits.
Here, page number is matched with all associative registers simultaneously. The
percentage of the number of times the page is found in TLB is call hit ratio. If it is

Processor
(running
program)

p d f d f

f

p

Virtual Address Physical Address

Physical Memory

Page Table

Paging Address Translation, using Associative and Direct Mapping

TLB

Page No. Frame No.

TLB Miss

TLB Hit

CPU



not found, it is searched in page table and added into TLB. If TLB is already full, then
page replacement policies can be used.

Protection and Sharing

Paging hardware also contains some protection mechanism. In page table
corresponding to each frame a protection bit is associated. This bit can tell if page is
read-only or read-write.

Sharing code and data takes place if two page table entries in different processes
point to same physical page, i.e. the processes share the same memory.

Advantages of Paging

1. Virtual address space may be greater than main memory size. i.e. programs
with large logical address space, compared with physical address space can
be executed.

2. Avoid external fragmentation and hence storage compaction.
3. Full utilization of available main storage.

Disadvantages of Paging

1. Internal fragmentation problem, i.e. wastage within allocated page when
process is smaller than page boundary exists.

2. Extra resource consumption and overheads for paging hardware is involved.

Segmentation
Segmentation presents an alternative scheme for memory management. This
scheme divides the logical address space into variable length chunks, called
segments, with no proper ordering among them. Each segment has a segment
number and a length. Thus the logical addresses are expressed as a pair of segment
number and offset within segment.

It allows a program to be broken down into logical parts according to the user view of
the memory, which is then mapped into physical memory. Thus logical addresses
are two-dimensional but physical addresses are still one-dimensional array of bytes
only.

Processor S d

Limit L Base B

Segment Table

d<L

No – Trap Error

Yes

S

+ B + d

Physical Memory

Address Translation



This mapping between the logical and physical memory is done by the segment
table, which contains segment base and length of segment. The offset d must range
between 0 and segment limit/length, otherwise it will generate address error. This
situation is shown in the figure below.

This method also allows read-only segments to be shared, so that two processes
can use shared code for better memory efficiency. With each segment-table entry,
protection bit specifying segment as read-only or execute only can be used. Hence
illegal attempts to write into a read-only segment can be prevented.

Segmentation may suffer from external fragmentation, i.e. when blocks of free
memory are not enough to accommodate a segment. Storage compaction and
coalescing can minimize this drawback.

Limit Base

1000

500

400

1000

1100

1500

5000

3000

4000

6000

0

1

2

3

4

Segment 0
Segment 1
Segment 2
Segment 3
Segment 4

Segment Table

Segment 0

Segment 2

Segment 3

Segment 1

Segment 4

1500

2500

3000

3400

4000

5000

5500

6000

7100

1000

500

1100

400

Segmentation - Principle of operation


