
Microprocessors and Micro-controllers
Class 6

Classification of Instruction based on number of operand address they contain:

(i) 0 – Address Instruction

Do not contain any operand address. Operand address is expressed implicitly which is the
Accumulator. Monadic operations like Shift and Compliment are 0-Address instructions.

(ii) 1 – Address Instruction

Only one operand address is specified in the instruction, which may be a register name or a
memory address. The other operand address is implied, which is present in the opcode
itself.

(iii) 2 - Address Instruction
Here both the operand address is specified. The result is place in one of the specified
address.

(iv) 3 – Address Instruction
Two addresses are specified for two operand and one address for result.

Addressing Modes

 Each instruction needs data on which it has to perform specified operation.
 This operand (data) may be in the

oAccumulator
oGeneral Purpose Registers
o In some specified location in the memory.

 The techniques of specifying the address of the data are known as addressing modes.
 The important Addressing Modes are:

(i) Direct or Absolute Addressing:
 The address of the data is specified in the instruction itself.

 e.g. STA 2500H (Stores the contents of the Accumulator in 2500H)
LDA 2500H (Loads A with the contents of 2500H)

(ii) Register Addressing:
 The operands are located in the registers (GPRs), i.e. the content of the register is the

operand.

 e.g. MOV A, B (Transfers the contents of B to register A)



(The opcode for this instruction is 78H. In addition to the operation to be performed, the OPCODE
also specified the address of the register mentioned in the Instruction.

78H, in Binary is 0111 1000, where 01 denotes MOV, 111 is the binary for register A, 000
Binary for register B).

 ADD B (Adds the contents of register B to the contents of the Accumulator).

(The opcode for this instruction is 80H. The binary code is 1000 0000. The first 5 bits 10000
specifies the operation to be performed. Last three bits 000 is the binary code for register B).

(iii) Register Indirect Addressing:
 Here the address of the operand is given indirectly. The contents of the register or the

register pair are the address of the operand.

 LXI H, 2400H (Load HL pair with 2400H. Move the content of the memory location
whose address is in HL pair (2400H) to the accumulator)

 MOV A, M (In this case, the address of the memory location is not directly given in
the instruction. The address of the memory location is stored in HL Pair which has been
specified by earlier instruction “LXI H, 2400H”).

 LXI H, 2200H (Loads HL Pair with 2200H)

 ADD M (Adds the contents whose address is in HL pair to the Accumulator).

(iv) Immediate Addressing
The operand is given in the instruction itself.

 MVI A, 06 (Move 06 to Accumulator)

 ADI 05 (Add 05 to the contents of A)

 LXI H, 2500H (Load HL Pair with 2500H)

(v) Implicit (or Implied) Addressing
These instructions operate only on one operand, which is the Accumulator.

 RAL (Rotate the contents of Accumulator left ).

 RLC (Rotate the contents of Accumulator left through carry)

 CMA (take compliment of the content of A).

Some other addressing modes are:

vi. Indexed Addressing

vii. Based Addressing

viii. Based Index Addressing

ix. Relative Addressing

x. Relative Indexed Addressing



xi. Page Addressing

xii. Stack Addressing

Intel 8085 uses addressing modes only from (i) to (v).

Definitions of certain terms related to Addressing Modes:
 A large memory is divided into segments.

 The memory address of an operand (data) consists of two components:

o The starting address of the segment and

oAn offset within the segment

 The starting address of the segment is supplied by the processor.

 The offset is determined by adding any combination of three offset address elements:

oDisplacement

oBase

o Index

 The combination depends on the addressing mode of the instruction to be executed.

 The offset is also called effective address.

 The memory address of an operand = Starting address of the segment + offset

 Displacement : A 8-bit or 16-bit immediate value given in the instruction
Base : Contents of the Base register
Index : Content of the index register

(vi) Indexed Addressing

The operand’s offset is determined by adding an 8-bit or 16-bit displacement (given in the
instruction) to the contents of the Index register.

(vii) Based Addressing

In this case, the operand’s offset is the sum of the contents of the base register + 8-bit/16-bit
displacement given in the instruction.

(viii) Based-Index Addressing

Here the contents of the Base register and the contents of the index register are added together to
form the effective address. The base register contains a base address and the index register
contains an index.

(ix) Relative Addressing

o Here a signed displacement is added to the current value of the Program Code (PC) to form
the effective address.

o This mode of addressing is commonly used in branch (or jump) instructions.

o This is also known as PC relative addressing.

o The effective address specified memory location in relation to the current value of the PC.



(x) Relative Indexed Addressing

In this mode of addressing, the contents of the PC and the contents of the index register are added
together to form the effective address.

(xi) Page Addressing

o In Paged mode of addressing, the memory is divided into a number of equal length pages.

o The page size is 256 bytes for 8 bit µP and 4 KB for 16-bit µP.

o The µP contains a page register to hold the page number.

o The instruction contains an offset. This offset indicates the address within the page w.r.t.
the starting address of the page.

o The advantage of this mode of addressing is that a fewer bits in the instruction are required
to indicate the memory address. The result is shorter instruction and faster execution.

(xii) Stack Addressing

In this case, the address of the operand is specified by the Stack Pointer (SP). The contents of the SP
are automatically incremented/ decremented after a PUSH/POP.

Interrupts and Exceptions

 When data are ready, an I/O device can interrupt CPU. After completing the current instruction
at hand, the CPU attends the I/O device.

 The CPU enters into a subroutine known as Interrupts Service Sub-routine (ISS) to transfer data
from the device.

 Each CPU has interrupt lines through which I/O devices can be connected to the CPU.

 When data transfer is over, the CPU returns to the program it was executing.

 An interrupt caused by an external signal applied to an interrupt input line of a CPU is known as
hardware interrupt.

 The normal program execution of a µP can also be interrupted by a special instruction in the
program. This is known as software interrupt.

 The internal events, which cause the processor to go out of its normal processing sequence, are
called Exception.

 The external events caused by external I/O devices, which prevent the further processing are
called Interrupts. It handles external asynchronous events.

 Exceptions handle internal abnormal or unusual conditions, which prevent further processing.
The processor treats S/W interrupts as exception.



Different type of interrupt in 8085
 In the 8085, as with any CPU that has interrupt capability, there is a method by which the

interrupt gets serviced in a timely manner. When the interrupt occurs, and the current
instruction that is being processed is finished, the address of the next instruction to be
executed is pushed onto the Stack.

 Then a jump is made to a dedicated location where the ISR (Interrupt Service Routine) is
located.

 Some interrupts have their own vector, or unique location where it's service routine starts.
These are hard coded into the 8085 and can't be changed.

1. TRAP - has highest priority and cannot be masked or disabled. A rising-edge pulse will
cause a jump to location 0024H.

2. RST 7.5- 2nd priority and can be masked or disabled. Rising-edge pulse will cause a jump to
location 7.5 * 8 = 003CH.

This interrupt is latched internally and must be reset before it can be used again.

3. RST 6.5 – 3rd priority and can be masked or disabled. A high logic level will cause a jump to
location 6.5 * 8 = 0034H.

4. RST 5.5 – 4th priority and can be masked or disabled. A high logic level will cause a jump to
location 5.5 * 8 = 002CH.

5. INTR – 5th priority and can be masked or disabled. A high logic level will cause a jump to
specific location as follows:

Instruction Cycle

 A program is a sequence of well-defined instructions. Both inputs (i.e. data and the operation to
be performed on the data), to the program are stored in the memory.

 The main job of the computer system is to execute these instructions.

 The instruction cycle is the sequence of events that takes place as the instruction is read from
the memory and executed.

 Although the Instruction - Cycle is called the “Fetch-Execute cycle”, but a simple instruction
cycle can be considered to be consisting of the following 4 steps:

(i) Fetch Cycle – Fetching the instruction from the memory.

(ii) Decode Cycle – Decoding the instruction

(iii) Execute Cycle – Executing the instruction

(iv) Store Cycle – Storing the result back to the memory



1. The Fetch Cycle:

During this cycle, the instruction which is to be executed next, is fetched from the memory to the
processor. The steps performed during the fetch cycle are as follows:

i. The Program Counter (PC) keeps track of the memory location of the next instruction.

ii. This address is transferred from PC to MAR.

iii. The instruction is read from the memory.

iv. The instruction thus obtained is stored in the MBR IR and the PC gets incremented by 1.

v. In the IR, the unique bit patterns that make up the machine language are extracted and
sent to the decoder.

2. The Decode Cycle

The decode cycle is responsible for recognizing the operation that the bit pattern represents and
activating the correct circuitry to perform the operation.

The steps are:

i. The OPCODE of the instruction is first read and then broken up into several
micro-instruction, which may contain activities such as reading data from the memory, IO
devices or registers.

ii. Hence the read operation may have to performed repeatedly and thus the operand is
fetched, and is made available for the execute cycle.

3. The Execute Cycle

Once the instruction has been decoded, the operation specified by the OPCODE is performed on
user-provided data in ALU.

The following steps are involved:

i. The data is fetched into ALU from the memory location pointed by MBR, or available in the
register, or in the instruction itself.

ii. The operation specified by the decoded op-code is performed on the data in ALU or it may
cause a jump to a different memory location, by overwriting the PC.

4. Store Cycle

After the fetch, decode and execute cycles been executed, the results are ready to be stored. The
steps involved are:

i. The results from the execution cycle are stored in the MBR.

ii. Then the results from MBR are stored back to the memory, or the IO device.



The entire activity of the Fetch-Execute cycle may be summarized as follows:

Timing diagrams for Fetch-Execution cycles

 Instruction cycle is defined, as the time required for completing the execution of an instruction.
The 8085-instruction cycle consists of one to six machine cycle or one to six operations.

 Machine cycle is defined, as the time required for completing one operation of accessing
memory, I/O. or acknowledging an external request. This cycle may consist of three to six
T-states.

 T-state is defined as one subdivision of the operation performed in one clock period. These
subdivisions are internal states synchronized with the system clock, and each T-state is precisely
equal to one clock period. The terms T-state and clock period are often used synonymously.

 The Timing diagram for different operations during Fetch-Execute cycle are given below:



Timing Diagram For opcode fetch Operation

 Here three T-states (T1 - T3)are used for the Fetch operation, and the fourth (T4) for Decode

 It may be noted that, if further read operation is not required, a machine cycle comprises of
four T-states only.

 Since the opcode fetch is to be made from memory, IO/M goes low, to indicate the memory
operation (where Memory indicates high).

 The ALE (Address Latch Enable), is high in T1, so as to multiplex the Data lines with Address lines
to carry the 16-bit memory address from PC.

 Then ALE goes low, so that the instruction (8-bit data) is loaded to the Data bus to be carried
frommemory to the CPU.

 The RD is high in T1, and goes low in T2, so as to enable the read signal to the memory

 The status bits S1 =1 and S0=1, to indicate FETCH operation

Timing Diagram For Memory Read and write Operation

 Here three T-states (T1 - T3) are used for the read operation.

 Since the read is to be made from memory, IO/M goes low, to indicate the memory operation
(where Memory indicates high). In case of IO read, the above bit becomes high.

 The ALE (Address Latch Enable), is high in T1, so as to multiplex the Data lines with Address lines
to carry the 16-bit memory address.

 Then ALE goes low, so that the data (8-bit data) is loaded to the Data bus to be carried from
memory to the processor during read operation and vice versa.

 The RD is high in T1, and goes low in T2 and T3, so as to enable the read signal to the memory
and similarly WR is high in T1 and goes low in T2 and T3.

 The status bits S1 =1 and S0=0, to indicate READ operation and S1 =0 and S0=1 to indicate WRITE
operation.




