
Memory Management

We know that the memory in the computer system is a large array of words or bytes,
each location with its own address. Interaction is achieved through a specific
reads/writes of specific memory address. The CPU fetches the program from the hard-
disk and stores it in the memory. if a program is to be executed, it must be mapped to
absolute addresses and loaded into memory.

In a multiprogramming environment, in order to improve the CPU utilization,
performance and throughput, several processes must be kept in the memory. Different
algorithms are used to manage the operations of the memory. The main tasks of the
O/S in connection to memory management are:

 Keep track of which part of the memory are currently being used and by whom.
 Decide which processes are to be loaded into memory when memory space

becomes available and
 Allocate and de-allocate memory space are needed.

The part of the O/S that performs this vital task of memory management is known as
memory manager.

Overlays and Swapping
Programs reside in the disk in form of executable files, which needs to be brought into
the memory and placed within a process. Such processes form the ready queue, from
which the selected process gets the CPU time for execution.

During these stages, addresses may be represented as source code address or in
symbolic form (e.g. LABEL). Compiler will bind these symbolic address to relocatable
addresses. The linker will bind these relocatable address to absolute addresses.

Now before we load the program in the memory, we must bind the memory addresses
that the program is going to use. Binding is basically assigning which address the code
and data are going to occupy. This Binding can be done during the compile-time, Load-
time or during Execution-time.

Compile-time: If memory location is known before hand, absolute address can be
generated.

Load-time: If memory location is not known, this relocatable address may be generated
during load-time.



Execution-time: In this case the binding is delayed until run-time, as because the
process can be moved during its execution. We need hardware support for address
mapping (the base and limit registers).

A large program may have several modules in it. For better memory utilization, all
modules can be kept on disk in a relocateable format and only main program is loaded
into memory and executed. Only when required, the other modules are called, loaded
and address is updated. Such schemes is called Dynamic Loading.

Overlays

Similar to Dynamic loading, we can use the concept of Overlays. Here the entire
program or application is divided into instructions and data sets such that when one
instruction set is needed it is loaded in memory and after its execution is over, the space
is released. The other instructions are loaded into the same space which has been
released. Such instructions which can be loaded and unloaded by a program are called
overlays.

Thus Overlays are part of a single application, which has been loaded at same origin
where previously some other part(s) – or overlays – were residing. A program based on
overlay scheme must have a root piece, which is always memory resident and a set of
overlays.

Overlay gives a program a way to extend limited main storage. It must be noted that the
overlays should be written in such a way that they follow the rule of mutual exclusion
and they should not call each other.

Read()

Funct1()

Funct2()

Display()

Read()

Display()

Funct1()

20K

50K

50K

20K

Funct2()

Overlay A
(50K)

Overlay B
(50K)

20K

20K

Without Overlay (140K)
With Overlay (90K)

Example of Overlay



Swapping

Swapping is an approach for memory management by bringing each process in entirety,
running it and then putting it back on the disk, so that another program may be loaded
into that space.

Swapping is a technique that lets us use the disk file as an extension of memory. Lower
priority user processes are swapped back to the disk and this is called Roll-out
Swapping. Swapping the process back to memory when some event occurs – may be
in a different location, is called Roll-in Swapping.

Advantages of Swapping:

 Allows high degree of multiprogramming
 Allows dynamic relocation. Address binding is done during execution time, so

that we can swap in the processes at different locations.
 Can be easily applied to priority-based scheduling algorithms to improve

performance.
 Better Memory utilization.

Operating System

User Processes
Process P1

Process P2

Roll-Out

Roll-In

Main Memory
DiskSwapping


